The pathophysiology and clinical implications of Hypoglycemia

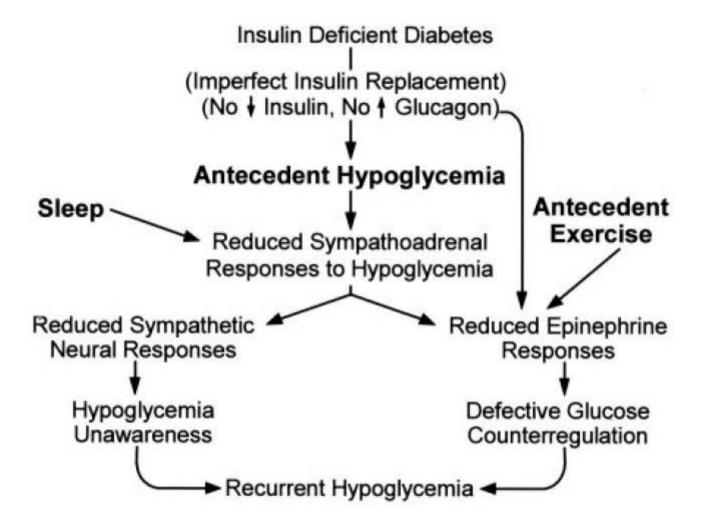
DAE HO LEE, MD, PhD

Department of Internal Medicine

Wonkwang University School of Medicine & Hospital

Responses to falling plasma glucose concentrations

-5 90-		Hormones	Baseline	Hypoglycemia (<50 mg/dL)
80- ← ↓		Epinephrine (pmol/L)	179±20	4251±568*
60-	Glucagon Epinephrine	NE (pmol/L)	1128±124	1957±134*
	mptoms Cognition	Cortisol (nmol/L)	330±32	714±42*
0	errant behavior izeure, coma	Glucagon (ng/L)	50±6	112±17*
- <u>1</u> 20- mol/l - Ne	euronal Death	GH (ng/mL)	4±1.34	25±5*


Cryer PE, J Clin Invest 2007 Joy NG et al., Diabetes (in press)

Hypoglycemia

ADA and The Endocrine Society, Workgroup on Hypoglycemia in April 2012

- All episodes of an abnormally low plasma glucose concentration that expose the individual to potential harm
- Plasma glucose level \leq 70 mg/dL
- ~ the lower limit of the normal postabsorptive plasma glucose concentration
- The thresholds for activation of counterregulatory systems in nondiabetic individuals
- The upper limit of plasma glucose level reported to reduce counterregulatory responses to subsequent hypoglycemia

Hypoglycemia-Associated Autonomic Failure

Affected patients are at 25-fold or greater increased risk for severe iatrogenic hypoglycemia during aggressive glycemic therapy

Cryer PE, Diabetes 54:3592–3601, 2005

Severe Hypoglycemia (<50 mg/dl) and Major Outcomes in ADVANCE Study

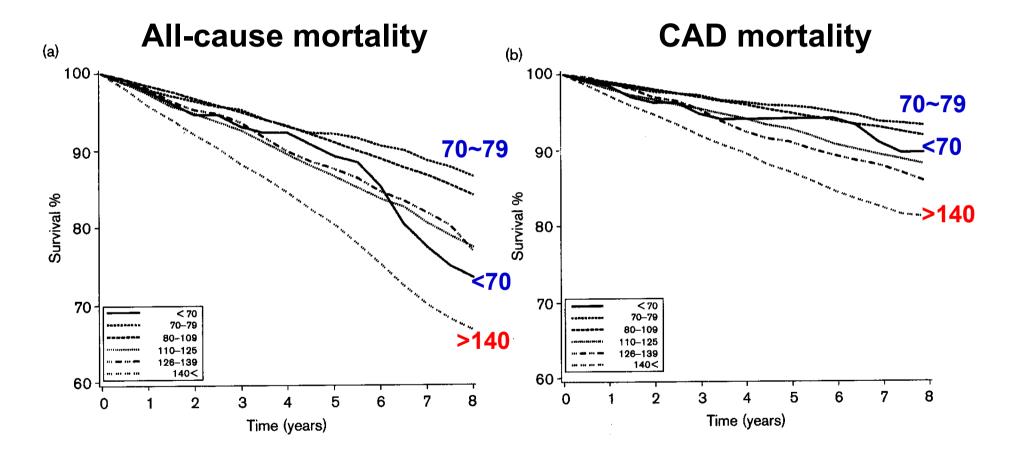
Events	Severe Hypoglycemia (N=231)	No Severe Hypoglycemia (N=10,909)	Hazard Ratio (95% CI)
	no. of patients w	vith events (%)	
Major macrovascular events	33 (15.9)	1114 (10.2)	
Unadjusted model			4.05 (2.86–5.74)
Adjusted model			3.53 (2.41–5.17)
Major microvascular events	24 (11.5)	1107 (10.1)	
Unadjusted model			2.39 (1.60–3.59)
Adjusted model			2.19 (1.40–3.45)
Death from any cause	45 (19.5)	986 (9.0)	
Unadjusted model			
Adjusted model			
Cardiovascular disease	22 (9.5)	520 (4.8)	
Unadjusted model			4.87 (3.17-7.49)
Adjusted model			3.79 (2.36–6.08)
Cancer	5 (2.2)	149 (1.4)	
Unadjusted model			3.44 (1.40-8.42)
Adjusted model			2.11 (0.65–6.82)
		0.1	1.0 10.0

Zoungas S et al., NEJM 2010

Severe hypoglycemia and mortality in ACCORD

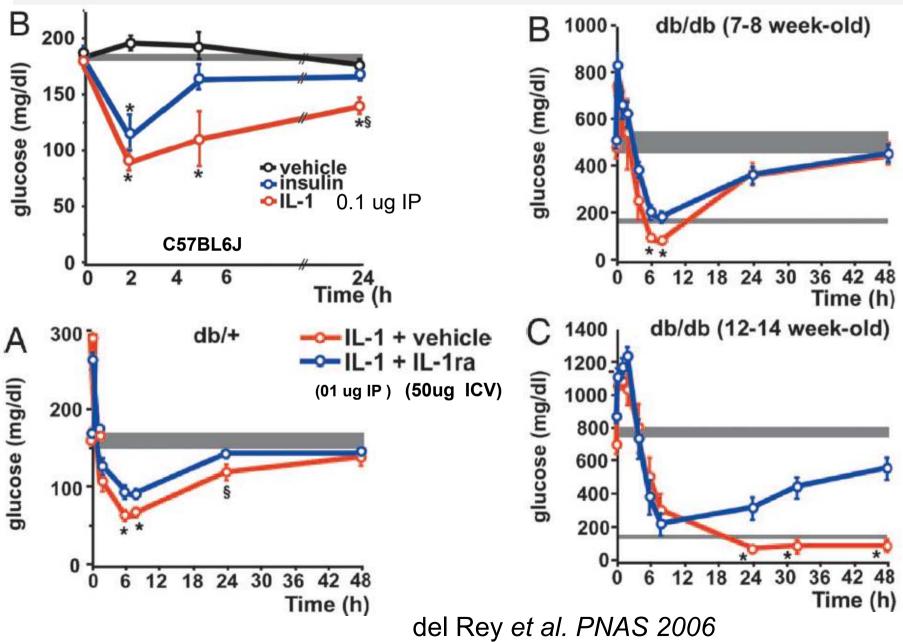
Role in mortality	Total (n=431)	Intensive	Conventional
Possible	8.8%	10.2%	7.0%
Probable	0.7%	0.41%	1.1%
Definite	0.23%	0.41%	0%

Of the 74 participants who reported any severe hypoglycemia during the study and died, six (8.1%) died within 30 days of the event.

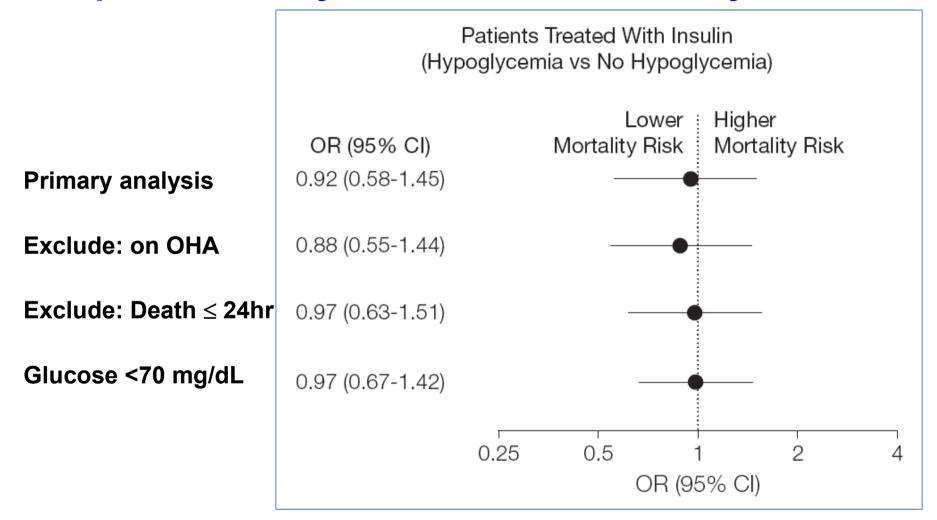

Bonds DE et al. Bmj 2010

The effects of severe hypoglycemia on CV outcomes in the ORIGIN trial

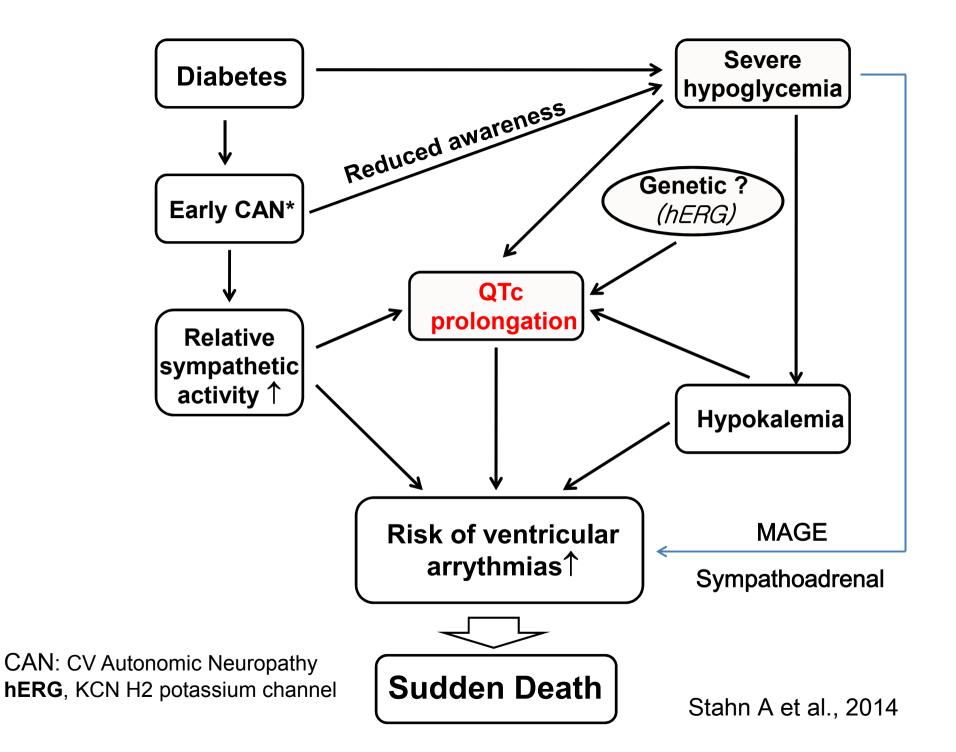
Groups	Outcomes	Hazard ratio (95% CI)	Р
Subset with	CV death, nonfatal MI, or nonfatal stroke	1.58 (1.24–2.02)	<0.001
severe hypoglycemia	Total mortality	1.74 (1.39–2.19)	< 0.001
	CV death	1.71 (1.27–2.30)	< 0.001
	Arrhythmic death	1.77 (1.17–2.67)	< 0.001
Severe hypoglycemia	CV death, nonfatal MI, or nonfatal stroke	1.70 (1.01–2.87)	0.047
in Standard vs.	Total mortality	2.31 (1.47–3.64)	< 0.001
Glargine Group	CV death	2.09 (1.15–3.82)	0.016
	Arrhythmic death	2.94 (1.29–6.70)	0.010

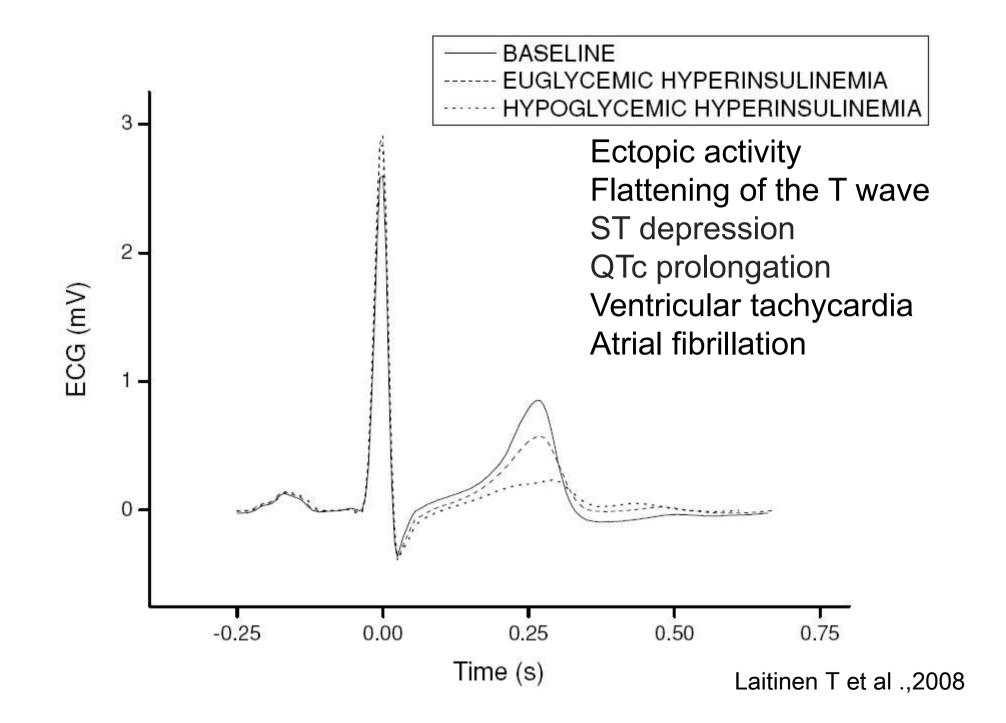

Gerstein HC et al.; ORIGIN Trial Investigators.. N Engl J Med 2012 The ORIGIN Trial Investigators. Mellbin LG et al., Eur Heart J 2013

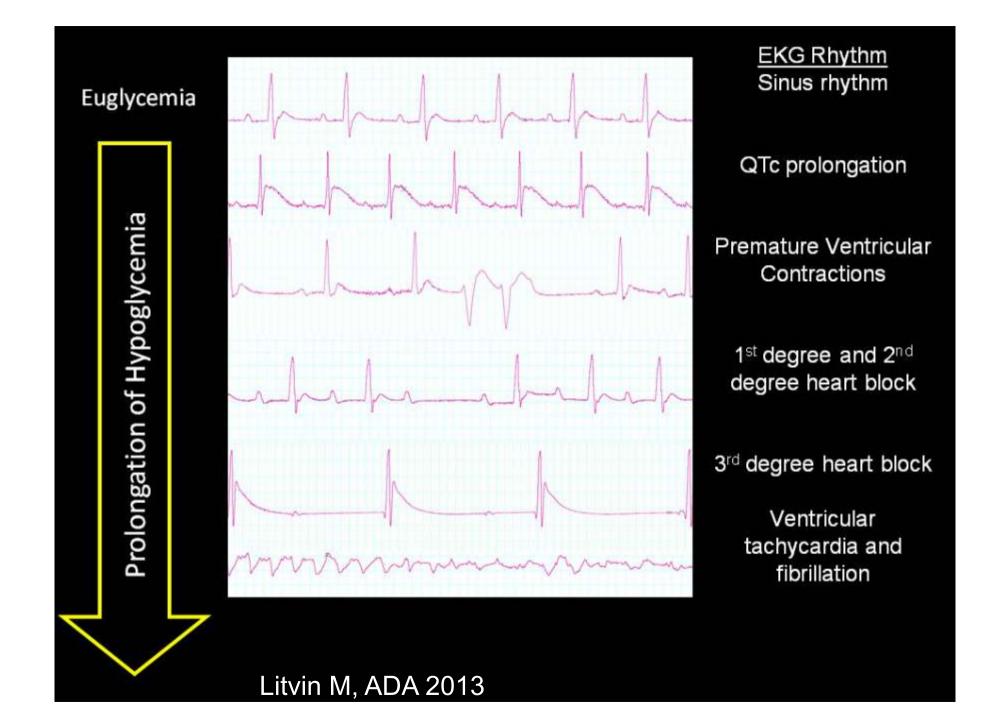
The effect of hypoglycemia: 8-year mortality in patients with CAD

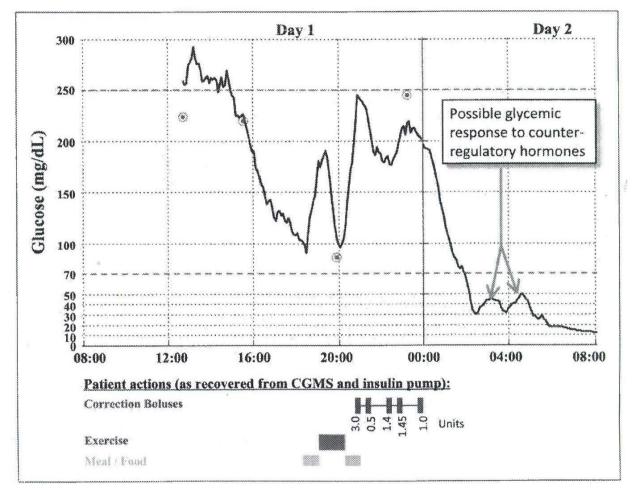


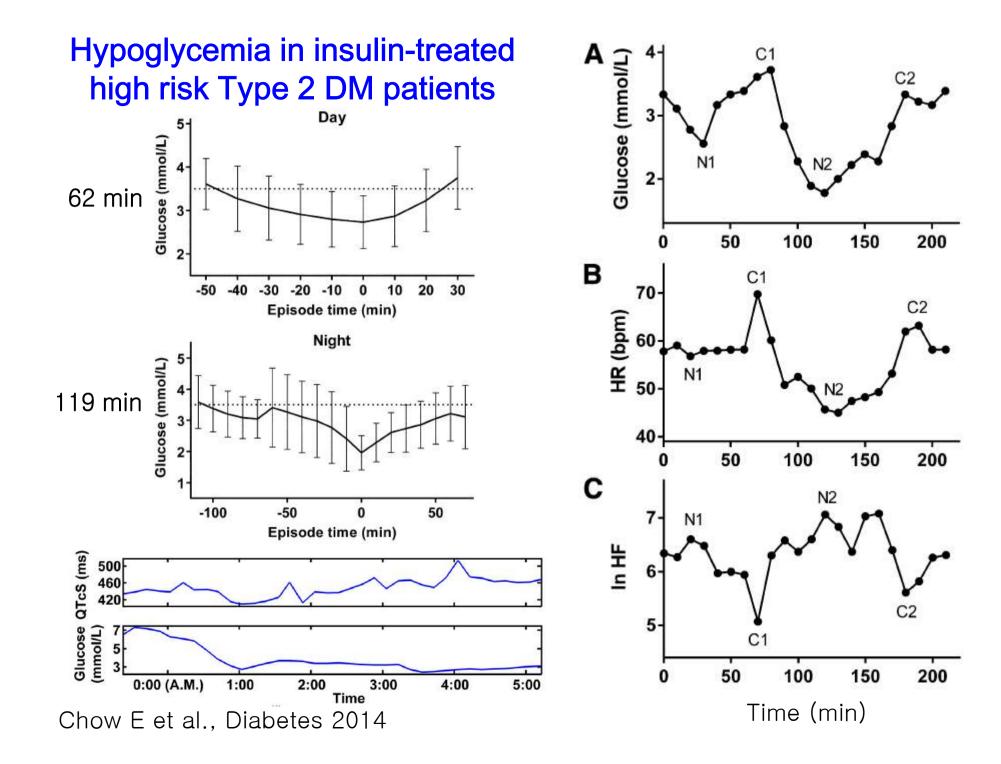
Bezafibrate Infarction Prevention study Fisman EZ et al., *Eur J Cardiovasc Prev Rehabil 11:135-143, 2004*


IL-1β induces hypoglycemia




Association Between Hypoglycemia and In-Hospital Mortality After Multivariable Adjustment

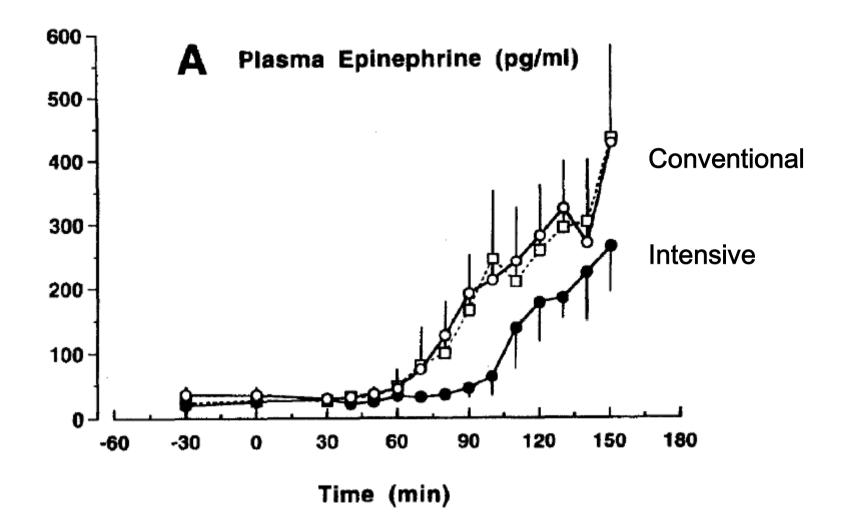

7820 AMI patients with hyperglycemia (\geq 140 mg/dL) on admission. Hypoglycemia; glucose < 60 mg/dL., Kosiborod M et al, *Jama 2009*



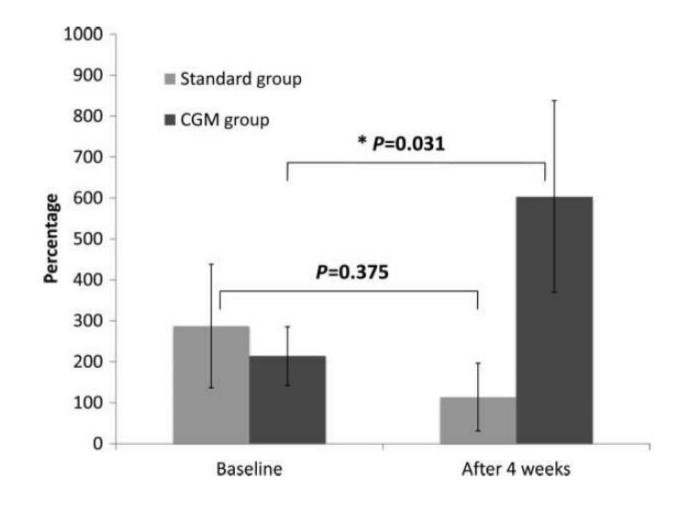
Dead-in-bed syndrome, captured by CGMS

Postmortem vitreous humor glucose 25mg/dL; Tanenberg RG et al., 2010

In monkeys, 5–6 hrs of blood glucose levels < 20 mg/dl were required for brain damage (average 13 mg/dl). Kahn KJ & Myers RE 1971


Association of Hypoglycemia and Cardiac Ischemia: CGMS and Holter monitoring

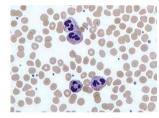
	Total Episodes	Chest pain (+)	Abnormal ECG (+)
Hypoglycemia (<70mg/dL)	54	10*	6*
Symptomatic	26	10*	4*
Asymptomatic	28	-	2
Normoglycemia w/o rapid changes	NA	0	0
Hyperglycemia	59	1	0
Rapid changes in glucose (> 100mg/dL per hr)	50	9*	2


* P < 0.01 vs. episodes during hyperglycemia and hypoglycemia

Patients (n=19) had CAD with a mean age of 58 \pm 16 years: HbA1c, 7.1 \pm 0.8%; DM duration, 12.9 \pm 5.6 years; being treated with insulin with or without metformin. *DESOUZA C et al.*, *DIABETES CARE 2003*

Epinephrine response to Hypoglycemia

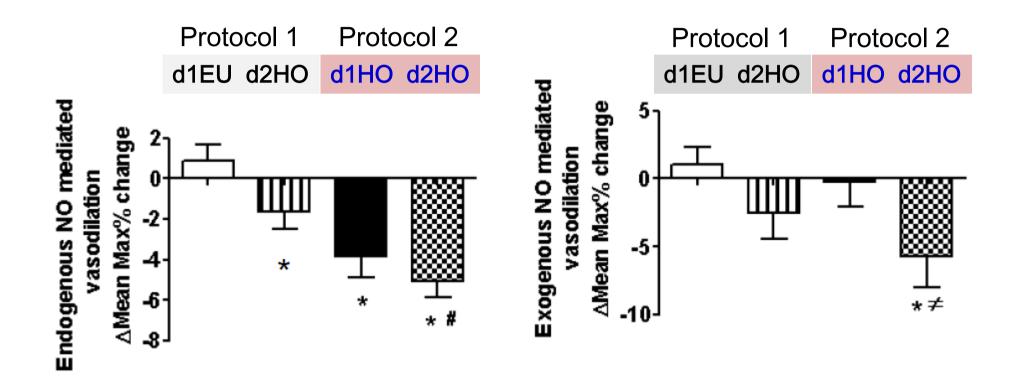
Improved epinephrine responses in hypoglycemia unawareness with real-time CGMS monitoring in adolescents with type 1 diabetes.


Ly TT et al., Diabetes Care. 2011

- ↑ PLT activation & aggregation,
- ↑ P-selectin
- ↑ vWF and factor VIII
- ↑ WBC and neutrophil activation
- ↑ Hct & Plasma viscosity
- ↑ PAI-1, Trombin/Anti-thrombin complex
- ↑ Oxidative stress markers

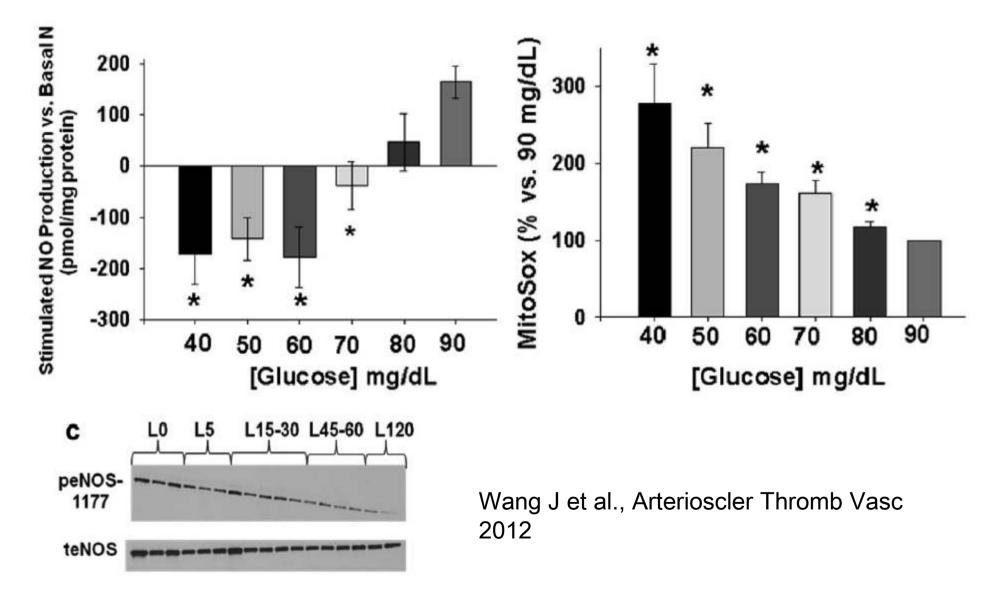
Endothelial dysfunction Vasconstriction Adhesion

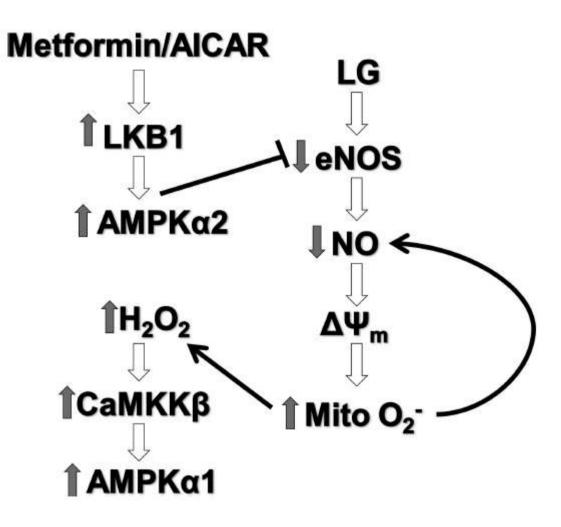
↑ ET1, CRP, IL-6, IL-8, IL-1β, TNFα, ROS VCAM-1, ICAM-1, E-selectin


Hypoglycemia

 ↓ Myocardial Blood Flow Reserve
↑ O2 demand and work load
ECG changes
Abnormal HRV

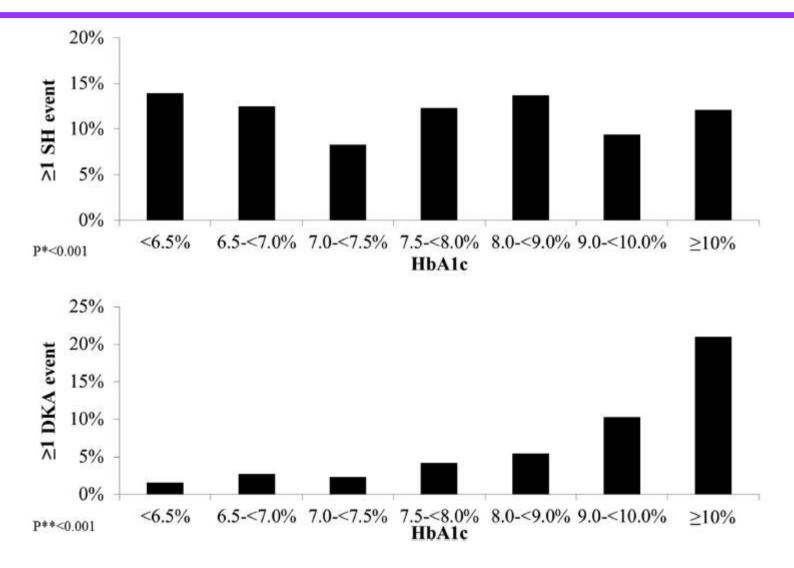
Rana OA, et al. Heart 2013 Desouza et al., Diabetes Care 2010 Joy NG et al., Diabetes (in press)


Hypoglycemia and Endothelial dysfunction

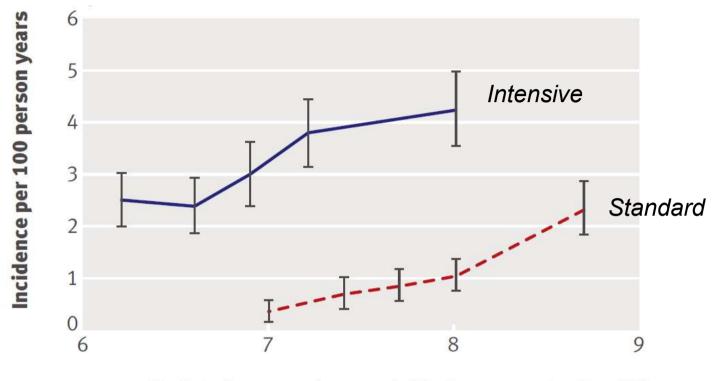

Flow mediated dilation (FMD) of the dominant brachial artery was measured using 2D Doppler ultrasound during reactive hyperemia and exogenous NTG administration

Joy NG et al., Diabetes (in press)

Effect of low glucose (LG) exposure on NO and mitochondrial superoxide production in HUVECs



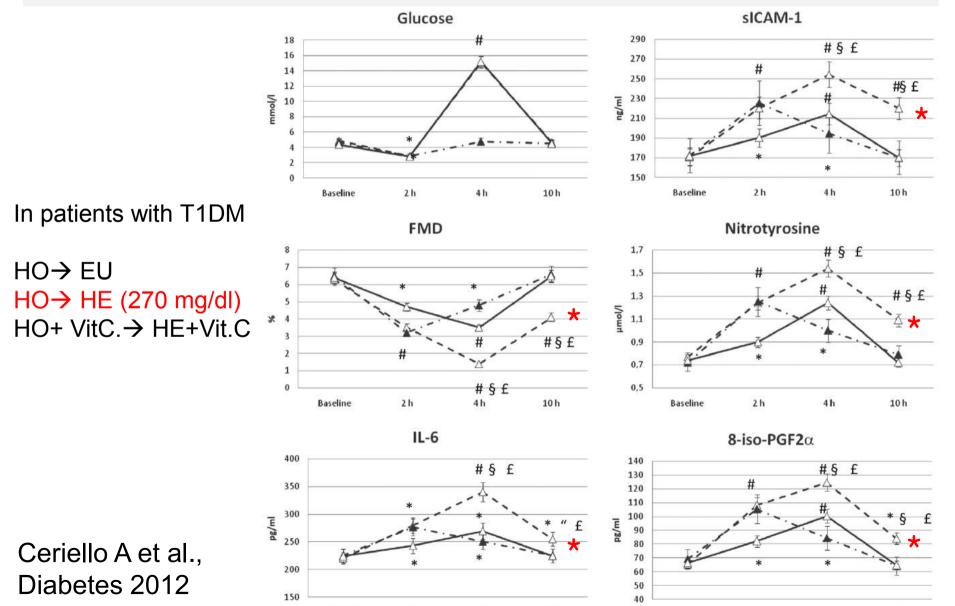
Effect of low glucose (LG) exposure on NO and mitochondrial superoxide production in HUVECs


Wang J et al., Arterioscler Thromb Vasc 2012

The 12-month frequency of severe HO and DKA according to HbA1c level (Adults with T1DM)

Weinstock RS 2013

Severe hypoglycemia in in ACCORD



Updated average haemoglobin A_{1c} concentration (%)

Severe hypoglycemia accompanied by an inability to achieve an HbA1c <6.0% was associated with insulin deficiency (C-peptide <0.45 ng/ml) (adjusted OR 23.2 [95% CI 9.0, 59.5], p < 0.0001) and the presence of autoantibodies (with OR range 3.9-16.7).

Miller ME et al. BMJ 340:b5444, 2010; Chow LS et al., Diabetologia. 2015

Hyperglycemia After Recovery From Hypoglycemia Worsens Various Parameters

4 h

10 h

Baseline

2h

4h

10 h

Baseline

2h

Hypoglycemia at Admission in Patients with Acute Myocardial Infarction Predicts a Higher 30-Day Mortality in Patients with Poorly Controlled Type 2 Diabetes Than in Well-Controlled Patients

Sang Ah Lee, Suk Ju Cho, Myung Ho Jeong, Young Jo Kim, Chong Jin Kim, Myeong Chan Cho, Hyo-Soo Kim, Youngkeun Ahn, Gwanpyo Koh, Jeong mi Lee, Seok Kyu Oh, Kyeong Ho Yun, Ha Young Kim, Chung Gu Cho, <u>Dae Ho Lee*</u>, on behalf of the KAMIR/KorMI Registry

Diabetes Care 37 (8), 2014

Objectives

- To evaluate the association between admission hypoglycemia and 30-day mortality in AMI patients,
- To determine whether these associations differed according to the pre-admission diabetes control status in AMI patients with type 2 diabetes mellitus.

Diabetes Care 37 (8), 2014

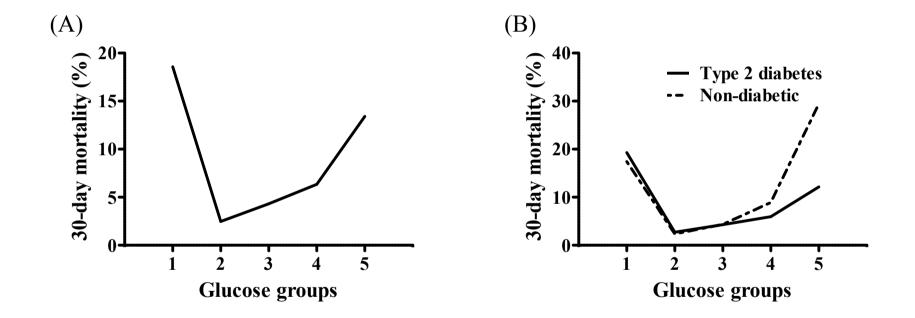
Methods & Subjects

- 34,943 AMI patients with or without type 2 diabetes from two AMI registries: the Korea Acute Myocardial Infarction Registry (KAMIR) and the Korea Working Group on Myocardial Infarction (KorMI).
- Analyzed two groups, the type 2 diabetes mellitus and nondiabetic groups.
- Each group was stratified into 5 subgroups (groups 1-5) according to the serum glucose level at admission: <70 mg/dL; 70-139 mg/dL; 140-199 mg/dL; 200-259 mg/dL; and ≥260 mg/dL.
- The primary study outcome was 30-day all-cause mortality

Baseline characteristics of the study subjects (n = 34,943)

	Non-diabetic (n=14,229)	Type 2 diabetes (n=20,714)	P value
Age (years)	63.31 ± 0.47	64.09 ± 0.08	<0.001
Sex (female)	44.71%	37.25%	0.001
BMI (kg/m²)	23.73 ± 0.03	23.89 ± 0.03	<0.001
sBP (mmHg)	128.51 ± 0.28	128.48 ± 0.26	0.910
dBP (mmHg)	78.77 ± 0.24	78.13 ± 0.23	<0.001
HbA1c (%)	5.75 ± 0.01	7.76 ± 0.02	<0.001
Glucose (mmol/L)	7.92 ± 0.04	10.52 ± 0.03	<0.001
Creatinine (µmol/L)	99.58 ± 1.36	114.72 ± 1.17	<0.001
Triglycerides (mmol/L)	1.44 ± 0.01	1.49 ± 0.01	0.001
HDL cholesterol (mmol/L)	1.16 ± 0.005	1.15 ± 0.003	0.005
LDL cholesterol (mmol/L)	3.01 ± 0.010	2.95 ± 0.009	<0.001
hsCRP (mg/L)	3.11 ± 0.06	3.78 ± 0.07	<0.001

Baseline characteristics of the study subjects (n = 34,943)


	Non-diabetic	Type 2 diabetes	P value
	(n=14,229)	(n=20,714)	
Killip class			<0.001
I	71.47%	72.81%	
II	13.49%	14.44%	
III	9.54%	7.31%	
IV	5.49%	5.44%	
Hypertension	52.23%	48.57%	<0.001
Smoking	40.68%	43.27%	<0.001
Previous MI	7.94%	6.13%	<0.001
Heart failure	2.56%	1.67%	<0.001
PAD	1.11%	0.54%	<0.001
CVA	7.62%	6.37%	<0.001

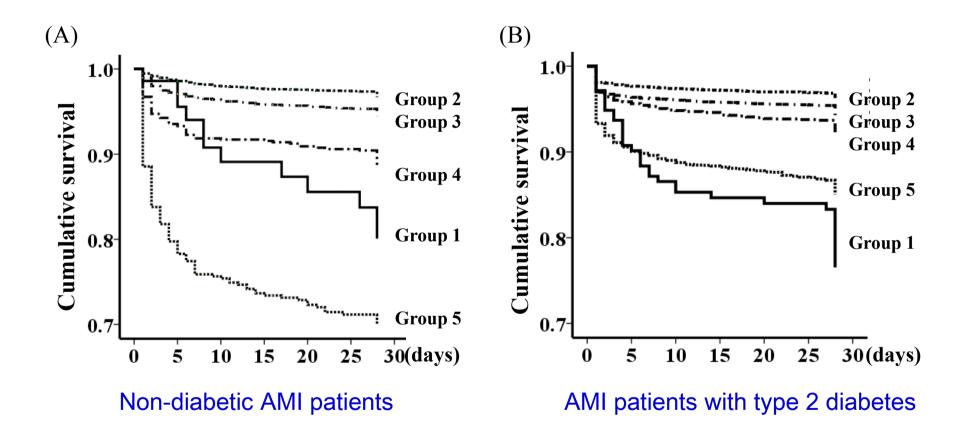
Baseline characteristics of the study subjects (n = 34,943)

Non-diabetic	Type 2 diabetes	P value
(n=14,229)	(n=20,714)	
65.19%	73.85%	<0.001
14.89%	13.40%	<0.001
4.89%	5.80%	<0.001
89.44%	89.38%	0.478
9.07%	7.39%	<0.001
94.085%	94.82%	0.101
10.85%	8.75%	<0.001
5.23%	3.42%	<0.001
3.61%	6.69%	<0.001
90.26%	79.87%	<0.001
	(n=14,229) 65.19% 14.89% 4.89% 89.44% 9.07% 94.085% 10.85% 5.23% 3.61%	(n=14,229) $(n=20,714)$ $65.19%$ $73.85%$ $14.89%$ $13.40%$ $4.89%$ $5.80%$ $89.44%$ $89.38%$ $9.07%$ $7.39%$ $94.085%$ $94.82%$ $10.85%$ $8.75%$ $5.23%$ $3.42%$ $3.61%$ $6.69%$

The 30-day mortality rates of the 5 glucose groups:

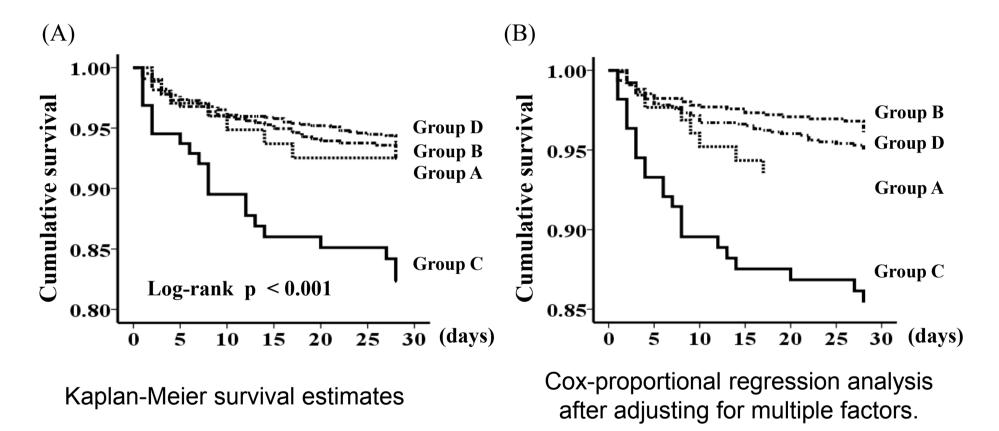
the total AMI patient cohort (n = 34,943) (A) and the AMI patients with (n=20,714) and without type 2 diabetes (n=14,229) (B).

The 5 glucose subgroups according to the admission serum glucose levels, as follows: group 1, <70 mg/dL; group 2, 70-139 mg/dL; group 3, 140-199 mg/dL; group 4, 200-259 mg/dL; and group 5, \geq 260 mg/dL.


The clinical characteristics of the 5 glucose groups based on admission glucose levels in AMI patients without diabetes

Croupo	Group 1	Group 2	Group 3	Group 4	Group 5	Dyoluo
Groups	(n = 154)	(n = 7,783)	(n = 4,040)	(n = 777)	(n = 402)	P value
Age (years)	63.8±1.1	62.4±0.2	63.9±0.2	66.7±0.5	67.6±0.6	<0.001
Female (%)	26.45%	24.46%	27.25%	35.31%	40.04%	<0.001
BMI (Kg/m²)	23.99±0.25	23.79±0.03	23.71 ± 0.05	23.51±0.12	22.85±0.16	<0.001
sBP (mmHg)	123.2±2.26	130.2±0.29	127.5±0.42	123.8±1.07	114.6±1.65	<0.001
dBP (mmHg) Killip class I II III	76.6±1.30 70.68% 11.28% 9.02%	79.5±0.17 78.99% 13.17% 4.99%	78.4±0.25 71.63% 15.50% 7.05%	76.8±0.61 55.79% 17.81% 10.59%	71.9±0.98 33.70% 13.66% 17.62%	<0.001 <0.001
IV Glucose (mmol/l)	9.02% 3.33±0.06	2.84% 6.39±0.01	5.81% 8.96±0.01	15.82% 12.37±0.03	35.02% 18.84±0.22	<0.001
HbA1c (%)	6.19±0.15	5.69±0.01	5.78±0.01	5.88±0.02	5.77±0.03	<0.001
Creatinine (µmol/L)	142.7±31.9	95.6±1.5	99.8±2.3	118.2±7.9	121.9±4.7	< 0.001
Hypertension	40.9%	43.96%	45.96%	49.36%	46.82%	<0.001
Heart failure	2.58%	1.19%	1.28%	2.89%	2.10%	<0.001

The clinical characteristics of the 5 glucose groups based on admission glucose levels in AMI patients with type 2 diabetes


Groups	Group 1	Group 2	Group 3	Group 4	Group 5	P value
Groups	(n= 255)	(n= 7432)	(n= 6276)	(n= 3396)	(n= 3737)	F value
Age (years)	67.6±0.7	63.1±0.2	64.4±0.2	64.4±0.2	65.2±0.2	<0.001
Killip class I	59.91%	78.50%	72.13%	67.89%	55.45%	<0.001
II	16.59%	11.91%	14.95%	14.88%	15.97%	
III	14.28%	6.96%	8.27%	10.83%	16.54%	
IV	9.22%	2.63%	4.65%	6.40%	12.06%	
Glucose (mmol/l)	2.97 ± 0.05	6.36±0.01	9.19±0.01	12.58±0.02	19.39±0.08	<0.001
HbA1c (%)	8.08±0.13	6.74±0.04	7.10±0.03	7.64±0.03	8.76±0.05	<0.001
Creatinine (µmol/L)	136.7±8.9	104.9±1.9	109.3±1.9	120.8±2.9	133.7±3.0	<0.001
hsCRP (mg/L)	14.1±2.40	8.2±0.37	8.7±0.44	10.3±0.67	11.3±0.67	<0.001
Diabetes treatment	71.24%	58.95%	67.31	62.68	74.15	<0.001
Heart failure	3.92%	1.92%	2.19%	2.74%	3.73%	<0.001
Statin use	14.11%	7.24%	8.46%	8.75%	9.15%	<0.001
Hypertension Tx	95.00%	87.52%	88.76%	91.76%	90.61%	<0.001
ARB	13.73%	6.16%	7.66%	7.77%	8.75%	<0.001

Cumulative survival curves according to the admission glucose levels

The 5 glucose subgroups according to the admission serum glucose levels, as follows: group 1, <70 mg/dL; group 2, 70-139 mg/dL; group 3, 140-199 mg/dL; group 4, 200-259 mg/dL; and group 5, \geq 260 mg/dL.

The effects of admission hypoglycemia and the preadmission diabetes control status on 30-day cumulative survival in AMI patients with type 2 diabetes.

Group A, HbA1c <6.5% and serum glucose <70 mg/dL; group B, HbA1c <6.5% and serum glucose \geq 200 mg/dL; group C, HbA1c \geq 8.0% and <70 mg/dL; and group D, HbA1c \geq 8.0% and serum glucose \geq 200 mg/dL

Conclusions

- Hypoglycemia in AMI patients with or without type 2 diabetes is a more important factor related to 30-day mortality than was previously thought.
- Hypoglycemia in AMI patients with poorly controlled diabetes is associated with increased mortality compared with patients with well-controlled diabetes.

Acknowledgements

- 정명호, 전남대학교병원 내과
- 이상아, 제주대학교병원 내과
- KAMIR/KorMI investigators